A New Low-Rank Representation Based Hyperspectral Image Denoising Method for Mineral Mapping

نویسندگان

  • Lianru Gao
  • Dan Yao
  • Qingting Li
  • Lina Zhuang
  • Bing Zhang
  • José M. Bioucas-Dias
چکیده

Hyperspectral imaging technology has been used for geological analysis for many years wherein mineral mapping is the dominant application for hyperspectral images (HSIs). The very high spectral resolution of HSIs enables the identification and the diagnosis of different minerals with detection accuracy far beyond that offered by multispectral images. However, HSIs are inevitably corrupted by noise during acquisition and transmission processes. The presence of noise may significantly degrade the quality of the extracted mineral information. In order to improve the accuracy of mineral mapping, denoising is a crucial pre-processing task. By leveraging on low-rank and self-similarity properties of HSIs, this paper proposes a state-of-the-art HSI denoising algorithm that implements two main steps: (1) signal subspace learning via fine-tuned Robust Principle Component Analysis (RPCA); and (2) denoising the images associated with the representation coefficients, with respect to an orthogonal subspace basis, using BM3D, a self-similarity based state-of-the-art denoising algorithm. Accordingly, the proposed algorithm is named Hyperspectral Denoising via Robust principle component analysis and Self-similarity (HyDRoS), which can be considered as a supervised version of FastHyDe. The effectiveness of HyDRoS is evaluated in a series of mineral mapping experiments using noise-reduced AVIRIS and Hyperion HSIs. In these experiments, the proposed denoiser yielded systematically state-of-the-art performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Image Mixed Noise Reduction Based on Improved K-svd Algorithm

We propose an algorithm for mixed noise reduction in Hyperspectral Imagery (HSI). The hyperspectral data cube is considered as a three order tensor. These tensors give a clear view about both spatial and spectral modes. The HSI provides ample spectral information to identify and distinguish spectrally unique materials, thus they are spectrally over determined. Tensor representation is three ord...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

An Approach towards Improved Hyperspectral Image Denoising

Amount of noise included in a hyperspectral image limits its application and has a negative impact on hyperspectral image classification, unmixing, target detection, and so on. The data that are contaminated with noise can cause a failure to extract valuable information and hamper further interpretation. The presence of noise in the image, extraction of all the useful information becomes diffic...

متن کامل

Hyperspectral image denoising and anomaly detection based on low-rank and sparse representations

The very high spectral resolution of Hyperspectral Images (HSIs) enables the identification of materials with subtle differences and the extraction subpixel information. However, the increasing of spectral resolution often implies an increasing in the noise linked with the image formation process. This degradation mechanism limits the quality of extracted information and its potential applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017